Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Sea Clutter Suppression and Target Detection via Deep Convolutional Autoencoder

In this paper, we investigate target detection based on the different relevance of sea clutter with a deep learning approach. The proposed method employs deep convolution autoencoder (CAE) to learn the necessary features and classification boundaries using the simulated data without employing any explicit features on the pulsed radar signals. Compared with conventional methods for sea clutter s...

متن کامل

Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things

In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the ...

متن کامل

Seismic facies recognition based on prestack data using deep convolutional autoencoder

Prestack seismic data carries much useful information that can help us find more complex atypical reservoirs. Therefore, we are increasingly inclined to use prestack seismic data for seismic facies recognition. However, due to the inclusion of excessive redundancy, effective feature extraction from prestack seismic data becomes critical. In this paper, we consider seismic facies recognition bas...

متن کامل

Speech enhancement based on deep denoising autoencoder

We previously have applied deep autoencoder (DAE) for noise reduction and speech enhancement. However, the DAE was trained using only clean speech. In this study, by using noisyclean training pairs, we further introduce a denoising process in learning the DAE. In training the DAE, we still adopt greedy layer-wised pretraining plus fine tuning strategy. In pretraining, each layer is trained as a...

متن کامل

Unsupervised Semantic-based Aggregation of Deep Convolutional Features

In this paper, we propose a simple but effective semantic-based aggregation (SBA) method. The proposed SBA utilizes the discriminative filters of deep convolutional layers as semantic detectors. Moreover, we propose the effective unsupervised strategy to select some semantic detectors to generate the “probabilistic proposals”, which highlight certain discriminative pattern of objects and suppre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shock and Vibration

سال: 2021

ISSN: 1875-9203,1070-9622

DOI: 10.1155/2021/6658575